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Wind-generated waves in contaminated liquid films 
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Department of Applied Mathematics, University of St Andrews, Fife, Scotland 

(Received 19 May 1967 and in revised form 23 August 1967) 

A uniform liquid film on a horizontal flat plate may be unstable to small dis- 
turbances when an air stream flows over the liquid surface. The stability of 
such films is examined for cases where the film is contaminated by an insoluble 
surface-active agent. 

Two approximate analyses are given, which are applicable to liquid films at 
moderately large Reynolds numbers and at fairly small Reynolds numbers, 
respectively. These supplement previous work on uncontaminated films by 
Miles (1960), Cohen & Hanratty (1965) and Craik (1966). 

At large liquid Reynolds numbers, the presence of surface contamination 
enhances stability due to increased dissipation in the viscous layer just within 
the liquid surface; but, at small liquid Reynolds numbers, there exists a class 
of disturbances for which surface elasticity may be destabilizing. 

1. Introduction 
Experiments concerning wind-generated waves in horizontal liquid films 

have been performed by Hanratty & Engen (1957), van Rossum (1959), Cohen 
& Hanratty (1965) and Craik (1966). It was observed by Craik that two distinct 
types of instability can occur, of which one is associated with very thin liquid 
films and the other with comparatively thick films. The three previous experi- 
ments concerned only the latter type of instability. 

The interaction of the air flow and a small disturbance of the liquid surface 
gives rise to fluctuations of the normal and tangential stresses at the surface, 
and these are responsible for both types of instability. For very thin films, Craik 
has shown theoretically that a small periodic disturbance may be unstable under 
the joint action of the normal-stress component in phase with the wave displace- 
ment and the tangential-stress component in phase with thewave slope. However, 
for thicker films at moderately large liquid Reynolds numbers, instability is 
due primarily to the component of normal stress which is in phase with the wave 
slope. The theoretical stability problem for this case has been considered by 
Bondi (1942) and by Cohen & Hanratty. 

The latter instability is due to the irreversible transfer of energy from the air- 
flow to the disturbance, taking place through the non-conservative forces which 
act  on the liquid surface. This instability occurs when the air flow is sufficiently 
large, for then the viscous dissipation within the liquid is insufficient to balance 
the energy transfer to a neutral wave. In contrast, the instabi1ity:of very thin films 
is due to the action of conservative forces a t  the liquid surface, and it is virtually 
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independent of the irreversible processes of viscous dissipation and of energy 
transfer to a neutral wave. A comprehensive discussion of such instability mech- 
anisms is given by Benjamin (1964). 

A further possible mechanism for instability has been proposed by Miles 
(1960). Due to the mean tangential stress exerted by the air flow, the primary 
velocity profile of the liquid varies linearly with the depth. At sufficiently large 
liquid Reynolds numbers, this flow may be unstable due to the action of viscous 
Reynolds stresses within the liquid, which transfer energy from the primary 
flow to the disturbance. In  examining this mechanism, Miles neglected the stress 
fluctuations exerted by the airflow at the perturbed liquid surface. 

It is well known that the presence of minute quantities of surface-active agent 
can greatly increase the rate of decay of waves in liquids of small viscosity, 
in the absence of an air flow. There have been several theoretical investigations 
of this phenomenon, notably by Levich (1962), Dorrestein (1951), van den 
Tempe1 & van de Riet (1965) and Miles (1967 a). (A useful survey of the relevant 
work on this subject is given in the introduction to Miles’s paper.) The results of 
these analyses are in substantial agreement with the experimental observations 
of Davies & Vose (1965) on the damping of capillary waves. A notable feature is 
that, as the amount of contamination is increased, the rate of decay is generally 
found to pass through a maximum for waves of a given frequency. 

In  the presence of an insoluble contaminant, the surface properties of the liquid 
may be identified with those of a visco-elastic membrane: for, deformation of the 
surface produces quasi-elastic forces proportional to strains and quasi-viscous 
forces proportional to temporal rates of strain. Such a mathematical model, 
incorporating both surface elasticity and surface viscosity, was used by Benjamin 
(1963) to examine the stability of a thin, contaminated liquid film flowing down 
an inclined plane. Here, Benjamin’s representation is adopted to examine 
wind-generated waves in contaminated liquid films. 

In  the stability analysis, only two-dimensional harmonic disturbances need be 
considered; for, every periodic three-dimensional disturbance may be treated 
in terms of a corresponding two-dimensional problem (see Lin 1955, 553.1, 
5.2), and the development of relevant small initial disturbances may be deduced 
by Fourier synthesis. In  addition to Squire’s theorem (Squire 1933; Hanratty 
& Woodmansee 1965), the results of Watson (1960) and of Michael (1961) concern- 
ing the behaviour of three-dimensional, temporally-amplified disturbances are 
applicable to the present problem. However, care is required when dealing with 
the ‘interfacial parameters ’-for example, those denoting gravity and the surface 
properties of the film-in order that these results may retain their maximum 
physical significance. 

For most of the analysis, the surface stresses which result from the inter- 
action of the air flow and small periodic disturbances of the liquid surface are 
represented in a suitable parametric form: the substitution of actual estimates for 
these stresses is delayed until a fairly advanced stage. This approach has con- 
siderable advantages over that of Feldman (1957), whose treatment of the com- 
plete stability problem for a two-fluid system leads to great complexity. To 
evaluate the surface stresses, Cohen & Hanratty used a numerical technique 
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developed by Miles (1962), which appears to yield satisfactory results when ap- 
propriate velocity profiles are adopted for the airflow. However, since the object 
of the present paper is to examine the role of surface contamination, it is here 
convenient to represent the surface stresses by less accurate, but simple, expres- 
sions which derive from the work of Benjamin (1959). 

Since an analysis based on the exact solution of the equations of motion for the 
liquid would be extremely complicated, two separate approximate analyses are 
performed. The first of these is similar to the treatment of Cohen & Hanratty 
and involves the use of asymptotic approximations which are likely to be valid 
at moderately large values of the liquid Reynolds number. The second analysis 
is a straightforward extension of that given by Craik (1966), and is based on a 
method first introduced by Benjamin (1957). This analysis is applicable to thin 
films at fairly small Reynolds numbers. 

2. Formulation of the problem 
The initial formulation of the problem has much in common with that of 

Miles (1960) and of Craik (1966). For convenience, reference is made to the latter 
papers by prefixing the letters ‘M’ and ‘I’ respectively to the appropriate 
equation number. (The list of symbols given in I may be found useful by the 
reader.) The motion of the liquid is assumed to be laminar, and the response of 
the liquid to random turbulent fluctuations in the air flow is regarded as small (as 
was certainly the case in the experiments of Craik 1966). For channel flows, the 
air stream exerts a constant mean tangential stress on the liquid surface; also, 
the pressure gradient in the direction of motion produces negligible curvature 
of the liquid velocity profile whenever the depth of the air-phase is large compared 
with that of the liquid. We therefore take the mean velocity profile in the liquid 
to be linear. The experimental results shown in figure 4 of I confirm that this 
is a good approximation for the films under discussion. The present formulation 
is also adequate for airflows of boundary-layer type: for, even though the mean 
tangential stress exerted by the air stream, and also the mean film thickness, 
may vary with distance, the length scale associated with this variation is likely 
to be much larger than the wavelengths of all relevant disturbances. 

All quantities are made dimensionless with respect to the film thickness h, 
the velocity V of the liquid surface and the liquid density p. The Reynolds number 
of the liquid film is defined as R = Vh/v where v is the kinematic viscosity of the 
liquid. The relationship connecting the primary motion of the liquid and that 
of the air is 

pV/h  = pa ui, (3.1) 

where p( = pv) and p,( = pay,) are the viscosity coefficients of the liquid and air 
respectively, pa is the air density and U; is the dimensional velocity gradient of 
the air flow at the air-liquid interface. Dimensionless co-ordinates x and y are 
chosen such that the x-axis is parallel to the direction of flow and the y-axis is 
vertically upwards. In  contrast to the notation of I, the rigid boundary is here 
denoted by y = 0 and the surface of the undisturbed film by y = 1. This agrees 
with Miles’s notation and therefore facilitates comparison with his results. With 
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this choice of co-ordinates, the dimensionless primary velocity profile in the 
liquid is 

A sketch of this configuration is shown in figure 1. 

wave-like perturbation is represented by 

U(Y) = Y. (2.2) 

The vertical displacement of the liquid surface due to a small two-dimensional 

y - 1 = q(x, t )  = Jeia(r*t). (2.3a) 

Here, a is the dimensionless wave-number, assumed to be real, and c is the 
dimensionless wave velocity, which may be complex with real and imaginary 
parts c, and ci. The associated horizontal displacement of particles comprising the 
liquid surface is denoted by 

<(x, t )  = &(x, t ) ,  (2.3b) 

where 3 is a complex quantity. 

ii=y 

y = o  

FIGURE 1. Sketch of shear flow and surface disturbance. 

Because of continuity, a perturbation stream function may be introduced, of 

Y, t )  = - $(Y) r(x ,  t ) ,  
the form 

such that the perturbation velocity components are 

u = $ 2/ = -$‘r, v = -1c., = ia$y, (2.4a, b )  

where the prime denotes differentiation with respect to y. Substitution of 
(2.4a, b)  into the linearized equations of motion leads to the results 

- 2a2$“ + a4$ = iaR(y - C) ($” - a’$), 

p = [(y-C) $’-$- (i~~R)-’($”-a’$’)]r(x,t), 
T = R-’(u, + Vx) = - R-’($” + a’$) r(X, t ) ,  

(2.5) 

(2.6) 

(2.7) 

where p and T are the perturbations of pressure and shear stress respectively. 

the wall yields the two boundary conditions 
The requirement that the perturbation velocity components should vanish at 

(2.8a, b)  $(O) = $ ’ ( O )  = 0. 

Also, the linearized kinematic surface conditions are 

du 
= u + - y ,  y = 1, 9 D< 

Dt = v ,  - 
dY Dt 

where the operator DIDt denotes the time derivative following the motion of 
the undisturbed liquid surface. These lead to the results 

(2.9a, b )  
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The remaining boundary conditions concern the normal and tangential stress 
perturbations at  the air-liquid interface, and involve the stresses exerted by the 
air stream and by the liquid surface. As in I, the dimensionless normal and tan- 
gential stress perturbations exerted by the air stream at the interface are repre- 
sented by 

gf/f/ = n?kt>, gzf/ = Cy(x,t). (2.10 a, b )  

The parameters II and 2 are complex and the subscripts r and i will be used to 
denote their real and imaginary parts. 

As described in the introduction, the properties of a contaminated liquid 
surface are identified with those of a visco-elastic membrane. In  its unstrained 
state, the surface is under a uniform tension y equal to the mean surface tension; 
in dimensionless form, this tension is To = y(pV2h)-l. Since the curvature 
after deformation is 0(6), the resulting elastic and viscous stresses make no first- 
order contribution to the normal stress, and the stress difference across the 
surface is simply To times the curvature, as in the uncontaminated case. It 
follows that the linearized normal-stress relationship at the surface is identical 
to that given in I ,  namely, 

- p  + 2 R - l ~ ~  = Tollaz + (II - G )  7 (y = 1). 

Here, G equals gh/ V2,  where g is the gravitational acceleration. On using results 
( 2 . 4 ~ )  b) ,  (2.6) and (2.9a)) this relationship becomes [cf. I (4.9) and M(2.10c)l 

6 (~-C)#'-#-(~~R)-~(#~''-~IX~#')-(T~~~+G-III)(~-C)-~$ = 0 (y = 1). 
(2.11) 

The tangential stress just inside the liquid surface must equal the sum of the 
tangential stresses exerted by the contaminated surface and by the air stream. 
The stresses due to elasticity and viscosity of the surface are given by Benjamin 
(1963) in the form 

(2.12) 

where y1 is the sum of the elastic moduli of surface dilatation and shear, and K is 
the sum of the surface dilatation and shear viscosities. The boundary condition 
expressing continuity of tangential stress at the surface is therefore 

- 
7 = cTzv+c7w, y = 1;  

or, on using results (2.7)) (2.9a,b), (2.10b) and (2.12)) 

4'' + [a2 +RE( 1 - c)-'] $ - iciR [TI( 1 - c)-' + i d ]  [#' - (1 - c)-' 41 = 0 (y = 1). 
(2.13) 

The stability problem is now completely specified by the fourth-order Orr- 
Sommerfeld equation (2.5) and the four boundary conditions ( 2 . 8 ~ )  b) ,  (2.11) 
and (2.13). The resulting characteristic-value relationship between c and a 
involves several representative parameters : R and G derive from the properties 
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of the liquid film, II and X from the airflow and To, T,, K from the nature of the 
liquid surface. When both T, and K are zero, the above boundary conditions are 
equivalent to those given in I for a clean film. 

3. The surface stresses 
The perturbations in normal and tangential stress exerted by the air flow 

are represented by the complex dimensionless parameters IT and 2. The real 
parts n,, X, denote stress components in phase with the periodic surface displace- 
ment r(x,t), while the imaginary parts IIi, Xi derive from stress components 
which are in phase with the wave slope aqlax. 

Estimates of IT and X,  which are based on the work of Benjamin (1959)) are 
given in I ( 5 . 2 )  and I (5.3). These estimates were derived for mean air-velocity 
profiles of boundary-layer type, on the basis of a ‘quasi-laminar’ model for the 
air flow. Such a model neglects all turbulent fluctuations, and there is evidence 
to suggest that the contribution of these fluctuations may indeed be small under 
laboratory conditions; however, they are probably important for large-scale 
motions such as ocean waves. (A recent paper by Miles (1967 b )  contains a critical 
appraisal of the quasi-laminar model.) 

Craik (1965) has shown that Benjamin’s estimates of IT and X may also be 
applicable to turbulent air flow in a channel of finite height, provided the wave- 
lengths of relevant disturbances are not large compared with the channel height. 
However, these estimates are based on several additional assumptions concerning 
the nature of the mean air flow, all of which do not appear to be satisfied in the 
existing experiments on wave generation in liquid films. It is therefore unlikely 
that the estimates will accurately represent all components of the stress perturba- 
tions for these experiments: the representation of II, may be fairly accurate, but 
the estimates of ni, C, and Ci are probably only of the correct order of magnitude. 
A brief discussion of the range of validity of Benjamin’s results is contained in I, 
and a fuller account is given by Craik (1965). 

As mentioned in the introduction, Cohen & Hanratty appear to obtain 
satisfactory estimates of the surface stresses by employing Miles’s (1962) 
numerical method. However, the present paper does not aim to provide accurate 
quantitative results for particular air velocity profiles; rather, its purpose is to 
elucidate the effect of surface contamination upon the stability of liquid films. 
For this purpose, it  is sufficient to represent the surface stresses in a simple para- 
metric form suggested by Benjamin’s results. As in I (5.2), we represent the 
component of normal stress in phase with the wave slope by 

Here, cf is a friction coefficient, defined by the expression 

V a  u; = CfU& 

where U, may be taken as the maximum velocity of the air flow. The quan- 
tity s is dependent on the properties of the air flow and of the surface displace- 
ment; but it may conveniently be regarded as fulfilling a role similar to the 
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Jefieys 'sheltering coefficient' (Jeffreys 1925). Since the value of s/cf is indepen- 
dent of the properties of the undisturbed liquid film, it is instructive to compare 
the behaviour of liquid films with various surface properties, when s/cf takes 
constant values. Accordingly, s/cl is treated as a constant parameter in the follow- 
ing analysis. In particular, the estimate of s given by Benjamin is not used here; 
consequently, the present treatment does not depend on the accuracy of this 
result. The term 2a/R in IIi derives from the mean shear stress exerted at the 
liquid surface. For, the parameter II Iepresents the direct stress acting vertically 
on the surface, while the mean shear stress R-I acts tangentially on the perturbed 
liquid surface: a simple transformation shows that the latter contributes a 
first-order term of 2ia/R times the surface displacement to the direct stress in 
the y-direction. 

For the normal stress component in phase with the wave displacement, we 
have, as in I ( & l a ) ,  

where the limits 1 and H of the integral I denote the boundaries of the airflow. 
Also, the estimate I (5.3) for the complex tangential stress parameter X is 

In  the following analysis, I/ct is regarded as a constant parameter. 

4. The eigenvalue equation for moderately thick films 
Four linearly independent solutions of equation (2 .5)  were found by Hopf 

(1914), and details of these are given also by Feldman (1957) and Miles (1960). 
Two of these are 

= coshay, q5z = sinhay, (4 . la ,  b )  

which are usually called the 'inviscid solutions'. Since the remaining two solu- 
tions, the 'viscous solutions', are rather unwieldy, we shall use asymptotic 
approximations which are valid for large values of aR. The simplest such approxi- 
mations are given by Lin (1955) as 

q554 = const (y - c)-iexp [ T %(iaR)g (y- c)$] (1 + (ccR)-)if(y) + ...I, (4.5% b) 

where i: = exp ()in) and, for nearly real values of c, y - c = (c - y) exp ( - in) when 
y < cr. Both viscous solutions fluctuate rapidly: the amplitude of the fluctuations 
associated with q53 decreases exponentially with distancelfrom the wall, while the 
amplitude of those associated with q54 increases exponentially. 

Throughout the following analysis, we shall use the above asymptotic approxi- 
mations to the viscous solutions q53 and q54. These are valid when 

(aR)* Il -c l% $ 1, (aR)tlclB 9 1. (4.3a, b )  

The same approximations were used by Cohen & Hanratty and by Feldman, but 
Miles's analysis differs in this respect. To examine real values of c between 0 and 
1, Miles did not impose the condition (4.3b): instead, he introduced asymptotic 

10-2 
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approximations which are uniformly valid with respect to c as aR becomes large- 
a refinement which is clearly necessary when cis very small. However, the present 
analysis primarily concerns values of c which exceed unity, and, for these, the 
inequality ( 4 . 3 ~ )  is the more stringent. The conditions under which this equality 
is satisfied are examined later. 

The function $(y) may be represented as a linear combination of the inviscid 
solutions $1, and the above asymptotic viscous solutions $3,4. Substitution for 
q5 in the boundary conditions ( 2 . 8 ~ ~  b) ,  (2.11) and (2.13) then yields four linear 
equations for the coefficients of $1, 2, 3, 4. In order that these equations should be 
consistent, their determinant must vanish; and this condition gives the eigenvalue 
equation for c. 

Following Miles, we may simplify the determinantal equation by neglecting 
q53( l), $4(0) and their derivatives. This is justified since, because of large exponen- 
tial factors, 

for nearly real values of c, both when 0 < c, < 1 and when c, > 1. The resulting 
determinantal equation is 

i $10 $20 $30 0 1 

, '11 '21 07141 I 
(4.4) 

Here, the first subscript identifies the solution and the second the point of evalua- 
tion, which is either y = 0 or y = 1. Substitution for $1 and q52 yields the result 

Also, from the asymptotic approximations ( 4 . 2 ~ ~  b )  for q53 and q54, we have the 
results 

+ O(R-$) ,  (4.6) 
'41 - . -8. - f41 iaR(1 - c ) ~  + S(1-  c) -&(id?)& (1 -c)+ 

5 ?% = -(-iaRc)*+-+o[(aR)-*]. 
$30 4c 

On introducing 

(4.7) 

e =  Q = (FC)*[T1(l  -c)-l+iccK], 
[iaR( 1 - C)]* 
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the results (4.5), (4.6) and (4.7) together lead to the equation 

a coth a( 1 - c ) ~  - (1 - c) -9- a( - iaRc)-i [a( 1 - c ) ~ -  coth a( 1 - c +a)] 

149 

is eYacotha 2ia [(l - ~ ) ~ a c o t h a + g ]  
= (1 -@-I(- [a coth a( 1 - c) - 11 + - 1 +- aR [iaR( 1 - c ) ] ~  R(1 -C) 

I 5i 
4Rc2 

+ __ [a( 1 - c ) ~  - coth a( 1 - c +9)] , (4.8) 

where terms of order O(R-g), O(&R-Q) and O(XR-4) have been omitted. 

5. The stability condition 
In  the following, the real and imaginary parts of c, 9 and Z are denoted by the 

subscripts r and i. Also, c, is taken to be positive, since it may be shown that all 
disturbances with negative c, are stable. It is further assumed that Ici\ is small 
compared with both I c, - 1 I and c,. 

It is convenient to introduce the parameters Q and E, defined as 

The real and imaginary parts of 6' are then 

1 -c, 

ll-crl 
I!?,= 0-8, ei= ~ (Q+E), 

and we have the identity 

11 - 812 = 1 + 2 ( ~  - Q) + 2 ( ~ 2 +  ~ 2 ) .  

The real part of equation (4.8) yields the result 

acotha(1 -cr)2-(l-c,)-~, = O{(aR)-*, M(aR)-*, (Zl/all -~'~,Kc,,c:}. (5.1) 

Thus, to a f i s t  approximation, the dimensionless wave velocity c, is unaffected 
by the presence of surface contamination. On making use of result (5.1), the 
imaginary part of equation (4.8) may be written as 

+ O{c,(aR)*, ci RT,, Q, E, cosech2 a} 
= y, a-'(c, - 1)p2 I 1 - 81 -' {R[ ( 1 - I!?,) C, - Si Xi] - (2aR I C, - 1 I )* 

x [acotha(c,- 1)+ 1][Q2+E+E2]). (5 .2)  

Since (aR)* is large, all terms of O( 1) may be omitted from this equation except 
when Q and E are small. But, for uncontaminated films with M = E = 0, such 
terms are important at large values of a, since cosech2a becomes very small. 
Terms which are O(Q), O(E) or O(cosech2a) may always be neglected. 

On setting Q and E equal to zero in equations (5.1) and (5 .2 ) ,  the results of 
Cohen & Hanratty for uncontaminated films are recovered. For such films, if 
s/cr is greater than 2,  the surface stresses represented by IT, and C., are both de- 
stabilizing when c, is greater than unity, and both are stabilizing when c, is less 
than unity. (Note that equation (5.1) requires that the coefficient of ci in (5 .2)  is 
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positive when c, > 1 and negative when 0 < c, < 1.) In  the former case, the sur- 
face stresses supply energy to a wave which travels downstream relative to the 
liquid surface. In  the latter, the wave travels upstream relative to the liquid 
surface and must expend energy in opposing the surface stresses: the air flow 
therefore extracts energy from such waves, and the destabilizing mechanism 
is provided by the Reynolds stressesin the liquid layer close to the wall. The waves 
examined by Miles were of the latter type, while the analysis of Cohen & Han- 
ratty concerned waves for which c, was greater than unity. When c, is negative, 
it may be shown that the surface stresses and the Reynolds stresses in the liquid 
are both stabilizing. 

If sicl is less than 3, the role of the stress component Hi is reversed. This occurs 
when the contribution to IT, due to the mean tangential stress at the liquid sur- 
face is sufficiently large to outweigh the contribution of the direct stress which 
acts normally on the wave. However, the work of Cohen & Hanratty and the 
experiments of Craik and van Rossum confirm that the magnitude of s/cf is 
typically O( 10) or greater a t  relevant wave-numbers: consequently, it is here 
assumed that sjcr is greater than 2. The role of the stress component TIi is un- 
changed by the presence of surface contamination: it is destabilizing when c, > 1 
and stabilizing when 0 < c, < 1. 

When c, is large compared with unity and terms in C, and ni are neglected, 
the results for uncontaminated films agree with those of Bondi (1942), which 
were obtained by neglecting the primary motion of the liquid film. Bondi’s wave 
velocity is simply the classical value for waves propagating in a liquid otherwise 
at rest. 

Since the overall effect of surface contamination is not immediately apparent 
from (5 .2 ) ,  we consider in turn its influence on the roles of (j) the variable tangen- 
tial stress C and (ii) the bulk viscosity R-l, both when 0 < c, < 1 and when 
c, > 1. 

(i) In  the absence of surface contamination, the term of equation (5.3) in- 
volving the tangential stress S is stabilizing when 0 < c, < 1 and destabilizing 
when c, > 1.  When 0 < c, < 1, this stabilizing role diminishes as the surface 
contamination is increased, and the net effect of the tangential stress components 
C, and Ci actually becomes destabilizing if [ Q ( l + r ) + % ( r -  l)] > 1, where 
r = C,/C,. (According to result (3.3), r equals 34.) When c,  > 1, the tangential 
stress components S ,  and S, are always destabilizing, and their influence is a 
maximum at some finite values of Q and %. For example, when r equals 34 
and E is zero, the appropriate term of equation ( 5 . 2 )  has a maximum value at  

C2 = (36- 1)/(3*- l ) ,  

which is almost three times that when Q is zero. 
When Q or % is large compared with unity, the influence of the tangential 

stress C on both classes of disturbance is small. Also, the role of the tangential 
stress perturbations is negligible compared with that of the nornial stress per- 
turbations for all values of Q and E, if 
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With the estimate of Z given in (3.3)) this condition is satisfied when aR is 
sufficiently large. 

(ii) The influence of surface contamination upon the role of the bulk viscosity 
is represented by the last term of equation (5.2). Since, from (5.1)) 

acotha(c,- 1) + 1 = Y,(C,- l)-’, 

this term is stabilizing both when 0 < c, < 1 and when c, > 1. The expression 
(a2+ 3 + E2)I 1 - 81-2 is a maximum with respect to L2 when Q equals 1 + E, 
and it has an absolute maximum value of 1 when = 1 and 3 = 0. Also, if !2 is 
fixed and less than +, the expression has its maximum value when S is infinite; 
while, if L! is greater than 8,  its maximum value occurs when 3 = 0. When either 
E or Cl becomes large compared with unity, the value of (SP+ E + E2) I 1 - 81-2 
approaches Q. 

Evidently, the contribution (ii) is most important. When condition (5.3) holds, 
the term in 2, may always be neglected. But, even when this condition is not satis- 
fied, these terms may still be negligible if E or L2 is large compared with unity. 
If, in fact, the tangential stress perturbation is negligible, the maximum degree 
of stabilization occurs when the surface viscosity is zero and when the surface 
elasticity is such that Cl equals unity. 

6. The neutral case 
As in I, we introduce the new parameters d and ri?, defined as  

- 
G = R2C = qh3/v2, !F = B2To = yh/pv2. 

These remain constant for a liquid film of constant thickness, even though its 
surface velocity, and hence its Reynolds number, may vary. The use of d and 
ri? rather than G and T, allows a clearer physical interpretation of the results than 
was possible in Miles’s work, where stability curves were obtained for several 
constant values of To + Although the critical conditions for the onset of 
instability in a given liquid film may ,be deduced from these curves, they lack 
the immediate physical significance of results pertaining to constant values of d 
and ri?. 

A further advantage of these parameters is apparent when three-dimensional 
disturbances are considered. With stability curves corresponding to constant 
values of G and To, the results of Squire (1933) and of Watson (1960)-see intro- 
duction-hold only for changes in R due to changes in viscosity, since G and To 
depend on the length and velocity scales h and V .  However,when stability curves 
are derived for constant values of 0 and ri?, the results of Squire and of Watson 
hold for changes in R due to changes in velocity, with constant viscosity and film 
thickness. Also, since the film thickness h remains unchanged, the work of Michael 
(1961) is applicable. 

Analogous to Miles’s result (M 5.4), a necessary condition for the existence of 
neutrally stable disturbances with 0 < c, < 1 is 

acotha- 1 > Toa2+G- n,. 
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With prescribed values of I / c f ,  (? and 5?, this condition may be expressed in the 
form R > R,(a), where R, is a known function of a. Therefore, for neutral waves 
to exist with 0 < c, < 1 in a liquid film of given thickness, the Reynolds number 
R must exceed the minimum value of the function R,(a). 

For the uncontaminated case, Cohen & Hanratty have calculated curves of 
neutral stability for disturbances with c, > 1. These calculations were based on 
more accurate representations of the surface stresses SI and X than those used 
here, and their results reveal that such disturbances usually become unstable a t  
Reynolds numbers substantially smaller than the corresponding minimum values 
of R,(a). It follows that disturbances for which 0 < c, < 1 are unlikely to play a 
significant part in determining the stability of clean liquid films: consequently, 
the instability mechanism examined by Miles (1960) is probably unimportant 
in this context. This conclusion is supported by the experiments of Cohen & 
Hanratty and of Craik. In  these, waves with c, > 1 occurred at  moderately large 
liquid Reynolds numbers, but no disturbances with c, < 1 were observed. (Dis- 
turbances with c, < 1 were observed by Craik in very thin films, but the present 
theory is not applicable to these, since the Reynolds numbers were small; instead, 
the theory of I applies.) 

Since surface contamination exerts a similar stabilizing influence on both types 
of disturbanee-see (ii) above-it may be expected that, for contaminated films 
also, disturbances with c, > 1 are less stable than those with 0 < c, < 1. Accord- 
ingly we now restrict attention to disturbances for which c, > 1. 

At this stage, it is convenient to derive the condition for onset of Kelvin- 
Helmholtz instability, which is required later. When R is sufficiently large, 
equation (4.8) simplifies to 

acotha( l -C)2-( l -c)-~ = 0; 

and, if the stress component in phase with the wave slope is neglected, this 
quadratic in 1 - c is found to have real or complex roots according as the quantity 

G + Ta2 - II, + (4a)-l tanh a 

is positive or negative. The existence of complex roots signifies the occurrence 
of Kelvin-Helmholtz instability. The condition for onset of this instability may 
be written in the form 

G +  Pa2-aRIcf-l+(4a)-ltanhaR2 = 0, (6.2) 

on using results (3.2) and (6.1). 
For moderately thick uncontaminated films, the minimum value of R at which 

Kelvin-Helmholtz instability may arise is much larger than that a t  which in- 
stability occurs due to energy transfer through the normal stress component &. 
However, it will be seen that the Kelvin-Helmholtz mechanism may be of greater 
significance for contaminated films. 

On setting ci equal to zero, curves of neutral stability may be obtained from 
equations (5.1) and (5.2). For simplicity, we assume that condition (5.3) is 
satisfied, and neglect terms in X, and Xi, together with other small terms. With the 
typical values slcr = 34 and I /c f  = 160, neutral curves of R against a, for c, > 1, 
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were thus obtained for several pairs of values for and p and for various 
surface properties. These surface properties were characterized by constant 
values of 

the chosen values being [j] = 0, 0.5, 1 and 3. The f i s t  of these corresponds to a 
clean surface, the third to large contamination with either Q or B much greater 
than unity, and the last to maximum stabilization with Q = 1, E = 0. For 
comparison, the corresponding curves for onset of Kelvin-Helmholtz instability 
were obtained from equation (6.2). The chosen values of and p were appro- 
priate for water films of various thicknesses, with v = 10-2cm2sec-1 and 
y/p = 73 em3 (The value of y/p appropriate for clean water is retained 
here, although, in practice, this value is somewhat reduced by the presence of 
surface contamination. The effect upon stability of this reduction in mean sur- 
face tension is likely to be small compared with that due to surface elasticity and 
surface viscosity.) To facilitate their physical interpretation, the results are 
presented as curves of dimensional wave-number k = a/h against the mean 
dimensional shear stress 7,. The latter is a property of the air flow alone, and is 
related to the Reynolds number of the film and the maximum air velocity U, by 
the expressions 

In  figure 2 are shown the neutral curves for water films of thickness 1 em, 
while table 1 shows the least values of T,, with corresponding values of k, which can 
sustain neutral waves in water films of three different thicknesses with various 
surface properties. 

From these results, the critical value of 7, is seen to be greatly increased by the 
presence of surface contamination; and, since 7, equals pacf  U: where U, is the 
maximum velocity of the air flow, the critical air velocity is correspondingly 
increased. For water films of thickness 1 em, the critical air velocity is over twice 
that for a clean surface when [j] = 0.5, and more than five times that for a clean 
surface when contamination is large ([j] = 1). Also, with maximum stabilization 
([j] = 2), the critical air velocity actually exceeds that for the onset of Kelvin- 
Helmholtz instability, the latter being 16 times larger than the critical velocity 
for a clean surface. For thinner films, the proportional increases in critical air 
velocity are rather less, but are still considerable: e.g. for a film of thickness 
0.06 em, the critical air velocity with large contamination in 86 yo greater than 
with a clean surface. 

At typical wave-numbers, Q is O( 1) when the contaminated surface possesses 
only a small amount of elasticity. For example, with a water film of thickness 
0.2 em, when k is O( 10) cm-l and T,, is O( 1) dyne Q is likely to be O( 1) when 
the surface elasticity coefficient y1 is O( 1) dyne em-l. With these same values of 
h, k and T,, 9 is O( 1) when the surface viscosity K is O( lop2) g see-1. 

Values of y1 which are O(l0)  dyne em-l are common for contaminating mono- 
layers of surface-active agents, but values of K as large as O(10-2)gsec-1 are 
unusual. Thus, for most monolayers and at typical wave-numbers, the stabilizing 
effect of surface elasticity is large, while the effect of surface viscosity is likely to 
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be negligible. However, if the surface is contaminated by certain proteins, for 
which K is large, the role of surface viscosity can become significant. Also, even 
for typical monolayers, the role of surface viscosity may be important at very 
large wave-numbers. 

10 20 40 100 0.1 0.2 0.4 14  2.0 4.0 
To( g cm-l sec-2) 

FIGURE 2. Neutral curves of wave-number k against mean shear stress ro for water films of 
thickness 1 cm, with sic, = 34 and I / c ,  = 160. The curves correspond, respectively, to  a 
clean surface (n = 3 = 0), [j] = 0.5, 1 and 2, and Kelvin-Helmholtz instability. 

hfcm) 1-0 

ro(g em-l 
sec-7 k(cm-1) 

Clean surface 0.084 2-4 

i 2 o r E 9 1  2-70 13-5 
C L = l , E = O  27-0 15.0 

[ j ]  = 0.5 0.39 4.3 

Kel~in-Helmh~lt~ 
instability 22-0 32-0 

0.2 
& 

7 0  k 
0.38 7.0 
0.717 8-0 
2.75 13.8 

27-0 75.0 

22.0 32-0 

0-06 
& 

7 0  k 
1.40 4.5 
2.22 15.0 
4.86 22,O 

27-0 75-0 

22.0 32.0 

TABLE 1. Critical values of ro and k for water films with various 
surface properties when s/cf = 34 and Ilc, = 160 

The observations of Keulegan (1951) and van Dorn (1953) indicate that the 
critical air velocity at which waves occur on relatively deep water may be in- 
creased by about an order of magnitude by the presence of surface contamina- 
tion; while van Rossum (1959) found that the least air velocity capable of pro- 



Wind-generated waves in contaminated liquid Jilms 155 

ducing waves in a water film of thickness 0.06cm may be increased from 7 to 
10 msec-1 by the addition of surface-active agent. Unfortunately, no data are 
available concerning the elastic and viscous properties of the water surfaces in 
these experiments. 

With cf = 2.3 x and pa = 1.29 x 10-3gcm-3, the results shown in table 1 
for a water film of thickness 0.06 cm yield critical air velocities of 690 cm sec-l 
for a clean surface and 1240 cm sec-l with large containination. These values are 
consistent with van Rossum’s observations; and the chosen values of s, I and cf 
are believed to be appropriate for his experiments (see Craik 1965). 

7. The approximations 
and 5! are prescribed constants, some terms on the right-hand side of 

equation (5.1) may not be negligible compared withy,, when R is very large. These 
neglected terms are small compared with G + Ta2 provided 

If 

B + 9 a-l(aR)%, R2Tl. (7.la, b)  

Clearly, neutral curves obtained from the present approximations are likely to 
be accurate only if conditions (7.1) are satisfied. (Note that this difficulty does not 
arise when the prescribed constants are G and T instead of B and p . )  Fortunately, 

+ pa2 is usually large in cases of interest, and there is a considerable range of 
liquid Reynolds numbers for which conditions (4.3a,b) and (7.1) hold. Such 
Reynolds numbers may be termed ‘moderately large’. With the estimate of C 
given in (3.3), condition (5.3) is likely to be met when (4.3a) is satisfied. 

The accuracy of the asymptotic solutions (4.2a, b )  depends on condition (4.3a) 
that (aR)glc - 11) 9 1. This condition is usually well satisfied on the upper 
branches and near the minima of the neutral curves, provided the film thickness 
is not too small. However, it  is not satisfied on the lower branches of the neutral 
curves at large R, since the wave velocity c tends to 1 + there. In  order to obtain 
accurate results for these branches, it would be necessary to introduce an asymp- 
totic approximation t o  the viscous solution q54 which is uniformly valid with re- 
spect to c - 1 as aR becomes large (cf. M 3.8). The neutral curves for the case of 
maximum stabilization are least accurate; for these, (aR)J (cr -  1)% is O( 1) in the 
vicinity of the critical values of ro. However, for the other neutral curves, con- 
ditions (4.3a) and (7.1) are satisfied near the critical values of ro. 

8. The stability of thin contaminated films 
We now consider the effect of surface contamination on wind-generated waves 

in thin liquid films. The method used is a straightforward extension of that 
described in I, the details of which need not be reiterated here. The stability 
problem is again characterized by the Orr-Sommerfeld equation (2.5) and the 
four boundary conditions (2.8a,b), (2.11) and (2.13); but, now, an approximate 
solution is sought under the assumptions 

a2 < 1, aR < O(l), aRlcl < O(1). (8.1 a, b, c )  



156 Alex D .  D. Crailc 

It is readily shown that the governing equation, which expresses c in terms of a, 
R and the other parameters of the problem, is, to good approximation, 

2a2 iaR ( T'cL' + G - II)) 

3ix 
2a 

T0a2+G-II+- = (1 -C)  

iaR 
5 

1-c)+---  1 + -  - [Tl + i d (  1 - c)] ij (C - 1)-l+ 3 + ~ ( 
5 4  1 - c  

(8-2) 

When TI and K are both zero, this result is identical to equation I (6.5) which 
holds for uncontaminated films. 

For neutrally stable disturbances, c is real and the real and imaginary parts of 
equation (8.2) are 

Toa2+ G -  II? - $(&/a) + T,(c - 1)-1{$ + &RrIi + (C - 1) ( 3  +:a'),> 

= Q( 1 - c ) ~  - 8( 1 - C) + a2RK{+( 1 - c ) ~  - a( 1 - C) - $( Toa2 + G - II,)}, 
- IIi+$(X,/a) + (1 - C) (aR)-l(3 +Fa2) +aRTl( 1 -c)-l{+(l-  c ) ~ -  1 4(1 - c )  

(8.3) 

-$(Toa2+G- I I , ) } + G X { + + & Z R I I ~ + ( C - ~ ) ( ~ + & Y , ~ ) }  = 0. (8.4) 

Thelatter equation may be written as a quadratic in (1 - c); and, on invoking con- 
dition (8.1 a)  and making the additional assumptions 

RK < O(l),  T,a2R2 < O ( l ) ,  RX, B aRIIIil, 2a2R2T1, a2RK, (8 .5a ,b ,c )  

approximate solutions are found to be 

where 

Clearly, two types of neutral wave are possible, of which one travels upstream 
and the other downstream relative to the moving liquid surface. We now assume 

that RE,, AiRE, < 1, (8.7a, b )  

in which case the wave velocity is close to unity for both types of disturbance. 
By virtue of conditions (8.1), (8.5) and (8.7), terms in a2, aRI& and a2RK may 

be omitted from equation (8 .3 ) .  Also, since c is close to unity, the terms t(1- c)2 

and 8( 1 - c )  may also be neglected (cf. I, $10) .  This leads to the simplified result 

T0a2 + G - I1, - $(Xila) + T,{+(c - 3)  = 0. (8.8) 

Clearly, since c - 1 is small, the term in Tl (c - 1)-l is bound to play an important 
role, even when Tl is itself small. 

For amplified or damped disturbances, c is complex with real and imaginary 
parts c,, ci. For this case, results similar to (8.6) and (8.8) may be obtained, subject 
to the restriction that ci is small. However, the resultant expressions for c, and 
ci are rather unwieldy, and it is more instructive to return to equation (8.2), keep- 
ing c complex but assuming that 11 - cI is small. Then, making simplifications 
similar to those above, we obtain the approximate equation 

3( 1 - c ) ~  - iaR9( 1 - C )  + iaRT1{$ + tiaR(T0a2 + G - II)} = 0, (8.9) 
where 9 = TOa2+ G -  II +$(iC,/a) + 3T1. 
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To the same degree of approximation as above, the imaginary part of II may 
be disregarded. 

When TI is zero, the relevant solution is 1 - c = BiaRS. (The solution c = 1 
being extraneous in this case.) That is, 

c,- 1 = *RC,-+aRnt, ci = -QCXR[T~CX~+G- rIv-#(Zi/a)], 

in agreement with results I (7.2) and I(7.3). However, when Tl is non-zero, both 
roots are permissible. Separating the real and imaginary parts of (8.9) and neglec- 
ting terms in H i  and cf, we obtain 

(8.10) 

where 9, denotes the real part of 9?. On eliminating (c, - l), these equations yield 

C, - 1 = $RX,[ 1 k (1 + A)*] 5 $ci ~,(cx/X,) (1 + A)-*, 

c,[~(c,- 1) -$RE,] + CXR~,(C,- 1) +&RT1 = 0, and 

ci(RS,)-l (1 +A)-$ (1 +A) + $(aR9?,)2] 
+ $cxR~~?,X,[( 1 + A)* & 11 $aRT1 = 0, 

where the upper and lower signs correspond to those in (8.10). Since the coeffi- 
cient of ci is positive, the condition for instability is 

RB,E,[( 1 +A)* 5 11 k 6T1 < 0, 

which may be expressed more simply as 

3, + $T1(cT - 1)-' < 0, (8.11) 

where the value of c, - 1 is now that given by equation (8.6). 
Since c,- 1 is a small positive quantity for the waves which are predicted to 

occur in uncontaminated films-we recall that II is negative-the presence of 
even a minute amount of surface contamination might be sufficient to suppress 
these. However, there now exists a new class of disturbances, for which c, - 1 is a 
small negative quantity, and for these the role of surface elasticity is strongly 
destabilizing. The appropriate condition for instability is then 

GT,(RX,)-l[( 1 + A)* - 11-l > Toa2 + G - &.-#(&/a) + 3T1. (8.12) 

As for waves in uncontaminated films, gravity and surface tension are stabilizing, 
and the normal stress component ll, and the tangential stress component Ci are 
destabilizing. In  addition, the term 3T1 on the right-hand side exerts a stabilizing 
influence, but this is small compared with the large destabilizing term on the 
left-hand side. 

9. Discussion 
In this analysis of thin films, the effect of surface viscosity has been shown to 

be negligible when azRK < 1. Now, RK equals K/ph where K is the dimensional 
surface-viscosity coefficient, and K is of order lo-3gsec-l or less for most mono- 
layers. Taking K = 10-3gsec-1 and p = 10-2gcm-1 sec-I as typical values, it  is 
seen that the inequality a2RK < 1 is satisfied for all relevant wave-numbers, 
provided F, is less than about 0.1 cm. Therefore, for the thin films under investiga- 
tion, the influence of surface viscosity is likely to be insignificant. 
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On the other hand, the presence of surface elasticity may have a marked 
effect, which is stabilizing or destabilizing according as the wave velocity is 
greater or less than unity. Now, Tl is of the same order of magnitude as the 
restoring gravitational term G when yl/pgh2 is O( 1);  and, when the film-thickness 
h is O( 10-2) em, this is so when y1 is O( 10-1) dyne cm-1. Since Tl is also multiplied 
by the large factor (1 - c)-I, it is clear that values of y1 as small as O( 1W2) dyne 
crn-1 may have a significant effect.It is relevant to note that values considerably 
larger than these are commonly found in tap water. 

The main cause of this striking role of surface elasticity is a component 

iaT1( 1 - c)-' 

of the tangential stress OZv (see 2.9 and 2.12). This component derives from the 
fact that the mean velocity gradient diildy is non-zero a t  the liquid surface. 
Were this velocity gradient zero, as is the case for flow down an inclined plane, 
this term vanishes, leaving only that stress component in a,, which depends on 
the velocity perturbation u at the surface. It is the latter which gives rise to the 
term 3T, on the right-hand side of result (8.12), and which is responsible for the 
stabilizing influence of surface elasticity in flow down an inclined plane (see 
Benjamin 1963). 

When 1 - c is real and positive, the stress component iaTl( 1 - c ) - I q  is in phase 
with the wave slope @/ax, and therefore reinforces the tangential stress com- 
ponent i&q due to the air flow: they drag liquid towards the crests and away from 
the troughs of a small wave-like disturbance. On the other hand, when 1 - c  is 
real and negative, the direction of the stress component iaTl( 1 - c ) - l ~  is reversed 
and it acts in opposition to the destabilizing stress component iXiq, thereby 
promoting stability. Gravity, surface tension and the direct stress component 
II,q due to the air flow give rise to a periodic horizontal pressure gradient in phase 
with the wave slope, of magnitude ia(G + Toa2 - IT,) q. Provided G + Toa2 - II, 
is positive, this pressure gradient tends to cause fluid beneath the crests to drain 
towards the troughs. The approximate condition for instability is then a simple 
kinematic one: namely, that there should be a net horizontal volume flux 
towards the crests and away from the troughs of some small wave-like perturba- 
tion. 

The validity of the instability condition (8.12) is subject to the conditions 
(8.la,b,c),(8.5a,b,c) and (8.7a,b).  For the estimates of C and ll givenin $3,  
it may be verified that all of these are generally satisfied for sufficiently thin 
films at  relevant wave-numbers. 

Since it appears that extremely small values of y1 should significantly affect 
the conditions governing instability in thin films, it is surprising that the theory 
for the uncontaminated case should agree so well with the experiments of Craik 
(1966). (The discrepancy between theory and experiment may be attributed to 
the approximate nature of the estimates of Ci and II,.) In  these experiments, 
no rigorous precautions were taken to avoid surface contamination; therefore, 
one might expect that some small amount of surface elasticity was present. On 
the other hand, the present theory for the contaminated case does not seem to 
give results in agreement with the experimental observations. In  particular, with 
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the estimates of C and rI given in § 3, the result (8.12) implies that disturbances 
of sufficiently large wavelength are always unstable, for all films to which the 
present theory is applicable. (However, this conclusion is rather sensitive to the 
dependence of C, on a; and, in view of the approximate nature of the estimate 
(3.3),  it should be treated with due scepticism.) 

One may speculate that, since a new surface was continuously formed as 
the film flowed into the experimental apparatus, the contamination might have 
been much Iess than that commonly observed for surfaces which are exposed to 
the atmosphere for a longer time. This suggestion is supported by the experiments 
of van Dorn (1966) on wave damping in relatively deep water. In  these, the effect 
of contamination was observed to increase with the age of the surface, reaching 
a maximum after about 1 h. 

Another possibility deserves mention: since all visible waves in such thin 
films were non-linear-in the sense that their amplitude was comparable to the 
film thickness-and since c, was 0.8 or less for these, the quantity TI( 1 - c,)-l 
is then much smaller than for truly infinitesimal waves. It is therefore conceivable 
that the influence of surface elasticity might be considerably diminished if the 
liquid film experienced non-linear initial disturbances : in view of the exceedingly 
thin film-thicknesses, it  is not unlikely that such disturbances were present. 
However, these suggestions are purely speculative, and further progress must 
await a careful experimental investigation which incorporates precise measure- 
ments of the surface properties of the liquid films. 

The role of surface contamination in moderately thick films, which was 
examined in the earlier part of this paper, is totally different from that just 
discussed. In  such films, instability occurs when the viscous dissipation within 
the liquid is insufficient to balance the energy transfer from the mean air flow 
to a neutral wave. When a-lRIc,- 11 is moderately large, wave energy is dissi- 
pated by viscosity in two fairly thin layers, one near the liquid surface and the 
other near the wall. For uncontaminated films, the dissipation in the surface layer 
is O(aR-llc,- ll-l), but this may increase to O(a*R-&1c,- 11-4) in the presence 
of surface contamination. By invoking boundary-layer approximations in such 
viscous layers, Miles (1967) has given a simple and illuminating account of this 
stabilizing role of surface contamination. 

It at first seems surprising that, in figure 3, only the neutral curve correspond- 
ing to a clean surface should extend to small values of the wave-number k ,  
while those for contaminated films reveal minimum values of k below which only 
damped disturbances may exist. This fact is due to the presence of a mean velocity 
gradient in the liquid: for, in (2.9b), a component of d derives from the velocity 
gradient a t  the liquid surface, and the resultant (stabilizing) component of the 
tangential stress 3,,-see (2.12)-becomes large at  small values of k( = a/h) 
due to small values of c - 1. Had this component been neglected, the remaining 
component of 7?xv would be found to exert a (diminished) stabilizing influence, 
but a branch of each neutral curve for contaminated films would extend to small 
values of k. It is only the latter component which is present when there is no air 
flow, and which is responsible for wave damping in liquids which are otherwise 
at rest. 
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Although the details of the present analysis differ from that of Miles due to 
the presence of a mean shear flow in the film, the nature of the stabilizing mechan- 
ism is essentially the same. In  moderately-thick clean films, the flow perturbation 
near the surface is approximately irrotational; but when contamination is 
present, the motion possesses a significant rotational component due to the 
additional tangential stresses at the surface. The greatest dissipation occurs when 
this rotational component possesses a maximum share of the available wave- 
energy; and the analysis shows that this is so when Cl = 1 and s = 0. Thus, for 
such films, the forces of surface elasticity modify the oscillatory motion of the 
liquid so as to increase the rate of energy dissipation in the viscous layer near the 
surface. 

I am grateful to Dr T. Brooke Benjamin for helpful discussions throughout the 
course of this work, and to Prof. J. W. Miles and Mr F. I. P. Smith for comments 
on an earlier draft of this paper. 

The manuscript was completed during a visit to the University of California, 
Institute of Geophysics and Planetary Physics, La Jolla, California. This visit 
was supported by the National Science Foundation, by the Office of Naval 
Research, and by a travel grant from the Sir James Caird Trust. 

R E F E R E N C E S  

BENJAMIN, T. BROOKE 1957 Wave formation in laminar flow down an inclined plane. 

BENJAMIN, T. BROOKE 1959 Shearing flow over a wavy boundary. J .  Fluid Mech. 6,161. 
BENJAMIN, T. BROOKE 1963 Effects of surface contamination on wave formation in falling 

liquid films. Arch. Mech. Stos. 16, 615. 
BENJAMIN, T. BROOKE 1964 Fluid flow with flexible boundaries. Proc. 1 lth Internat. Congr. 

Appl. Mech., Munich. Springer, Berlin. 
BONDI, H. 1942 On the generation of waves on shallow water by wind. Proc. Roy. SOC. 

A 181, 67. 
COHEN, L. S. & HANRATTY, T. J. 1965 Generation of waves in the concurrent flow of 

air and a liquid A.I.Ch.E.J. 11, 138. 
CRAIK, A. D. D. 1965 Wind-generated waves in liquid films. Ph.D. Dissertation, Univer- 

sity of Cambridge. 
CRAIK, A. D. D. 1966 Wind-generated waves in thin liquid films. J. Fluid Mech. 26, 

369. 
DAVIES, J. T. & VOSE, R. W. 1965 On the damping of capillary waves by surface films. 

Proc. Roy. SOC. A286,218. 
DORRESTEIN, R. 1951 General linearized theory of the effect of surface films on water 

ripples, I. Proc. K.  Akad. Wet. B 54, 260. 
FELDMAN, S. 1957 On the hydrodynamic stability of two viscous incompressible fluids 

in parallel uniform shearing motion. J. Fluid Mech. 2, 343 (Corrig. 3, 328). 
HANRATTY, T. J. & ENGEN, J. M. 1957 Interaction between a turbulent air stream and a 

moving water surface. A.I.Ch.E.J. 3, 299. 
HANRATTY, T. J. & WOODMANSEE, P. E. 1965 Stability of the interface for a horizontal 

air-liquid flow. Proceedings of Symposium on Two-Phase Flow, vol. 1, p. A 101, 
University of Exeter. 

HOPF, L. 1914 Der Verlauf kleiner Schwingungen auf einer Stromung reibender Flus- 
sigkeit. Annln Phys. 44, 1.  

JEFFREYS, H. 1925 On the formation of water waves by wind. Proc. Roy. Soc. A 107, 189. 

J. Fluid Mech. 2, 554. 



Wind-generated waves in contaminated liquid Jilms 161 

KEULEGAN, G. H. 1951 Wind tides in small closed channels. J .  Res. Nat. Bur. Stand. 46, 

LEVICH, V. G. 1962 Physicochemical Hydrodynamics. New York: Prentice-Hall. 
LIN, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press. 
MICHAEL, D. H. 1961 Note on the stability of plane parallel flows. J .  Fluid Mech. 10, 525. 
MILES, J. W. 1960 The hydrodynamic stability of a thin film of liquid in uniform shearing 

MILES, J. W. 1962 On the generation of surface waves by shear flows. Part 4. J .  Fluid 

MILES, J. W. 1967a Surface-wave damping in closed basins. Proc. Roy. Soc. A 297, 459- 
MILES, J. W. 1967 b On the generation of surface waves by shear flows. Part 5 .  J. Fluid 

SQUIRE, H. B. 1933 On t.he stability for three-dimensional disturbances of viscous fluid 

VAN DEN TEMPEL, M. & VAN DE RIET, R. P. 1965 Damping of waves by surface-active 

VAN DORN, W. G. 1953 Wind stress on an artificial pond. J .  Mar. Res. 12, 249. 
VAN DORN, W. G. 1966 Boundary dissipation of oscillatory waves. J .  Fluid Mech. 24, 

VAN ROSSUM, J. J. 1959 Experimental investigations of horizontal liquid films. Chem. 

WATSON, J. 1960 Three-dimensional disturbances in flow between parallel planes. 

358. 

motion. J .  Fluid Mech. 8, 593. 

Mech. 13,433. 

Mech. 30, 163. 

flow between parallel walls. Proc. Roy. SOC. A 142, 621. 

materials. J .  Chem. Phys. 42,2769. 

769. 

Engng. Xci. 11,35. 

Proc. Roy. Xoc. A 254, 562. 

11 Fluid Mech. 31 


